Annexure 1

Detailed Syllabus of Course

S.	Module Title			ation urs)	Learning Outcome
No		Topics	Theory	Lab	Learning Outcome
1.	Introduction to Digital Electronics	 Number System Logic Gates Latches and Flip Flops Combinational Logic Circuit Sequential Logic Circuit 	4	6	 Basic athematic operation using binary numbers and the conversion. Understanding of different types of gates and building logical circuit using basics and universal gates. Knowledge of different types of flip-flop and latches and operation of combination and sequential circuit

2 Basics of Digital VLSI Technology	 Basics of Digital VLSI Technology Historical Perspective. VLSI technology trends performance measures and Moore's law comparisons of technology trends. Introduction to the family of Transistor. Basics of CMOS Transistor MOSFET Fabrication Process INVERTERS VLSI Design Flow Introduction to ASIC & FPGA 	4	8	 Understand brief history, present and future and Design Cycle of VLSI technology. Understand the Design Cycle of VLSI
---	---	---	---	--

3	Fabrication Process and Layout Design Rules	 Fabrication Process and Layout Design Rules Introduction to fabrication Process. General Aspects of CMOS Technology. CMOS Inverter Fabrication Process. Layout Design Rules. Semi-Custom Design Flow Full-Custom Design Flow 	6	0	 Understand Layout Design Rules. Working principal, structure and operation of transistors like NMOS, PMOS and CMOS. Understanding of fabrication Process MOSFET and CMOS devices.
4	Digital CMOS Design	 CMOS Inverter Basics. Inverter Transfer Characteristics. Inverter sizing. Inverter Design. Other types of Inverter and its problem. 	4	8	 Understand the Digital CMOS Design Design CMOS Inverter and analyze transfer characteristics Types of inverter, their problem and solutions

6 Implementation of Logic Gates -Implementation and tatio n and using Dataflow modelling in Simulations of Basic, universal Simulatio -Implementation of Universal Gates using different modelling n of -Implementation of Universal in Verilog gates/circ Gates using Dataflow modelling -Implementation and uits in Verilog -Implementation of Logic Gates -Implementation and rool (ModelSi using Gate-Level Modelling in -Implementation and m or Xilinx) Verilog -Implementation and Verilog -Implementation of Universal Simulations of Mux (2:1, 4:1, 8:1) in Verilog. -Implementation of Universal Gates using Gate-Level Modelling in -Implementation and Morelling in Verilog -Implementation Mux in Verilog -Implementation and -Implementation different flip-flops in Verilog -Implementation Combinational 200 20	5 Hardw are Modeli ng Using Verilog	 Introduction to Verilog Programming Structure Level of Abstraction Data Type Behavioural Modelling and Timing Verilog PROCEDURAL ASSIGNMENT Introduction to BLOCKING NON-BLOCKING ASSIGNMENTS in Verilog Verilog Functions Verilog User Defined Primitives Writing Very First Program WRITING TEST BENCHES in Verilog Simulation Basics 	10	18	 Understand Verilog programming syntax. Level of Abstraction in Verilog programing Writing and simulating small programs and testbenches in Verilog
Total 90 Hours(Theory-30, Practical-60)	n and Simulatio n of Logic gates/circ uits in Verilog using Tool (ModelSi m or	Verilog •Implementation of Universal Gates using Dataflow modelling in Verilog •Implementation of Logic Gates using Gate-Level Modelling in Verilog •Implementation of Universal Gates using Gate-Level modelling in Verilog •Implementation Mux in Verilog •Implementation different flip- flops in Verilog •Implementation Combinational Logic Circuit in Verilog •Implementation Sequential Logic Circuit in Verilog			Gates using different modelling in Verilog •Implementation and Simulations of Mux (2:1, 4:1, 8:1) in Verilog. •Implementation and Simulations of Combinational and Sequential in Verilog